• <li id="m8oa8"></li>
    <strike id="m8oa8"><acronym id="m8oa8"></acronym></strike>
    <rt id="m8oa8"></rt>
    <strike id="m8oa8"></strike>
    <rt id="m8oa8"><delect id="m8oa8"></delect></rt>
    產(chǎn)品展示
    首頁 > 產(chǎn)品展示 > > 其他檢測儀器 > TC-500 氧氮聯(lián)合測定儀

    TC-500 氧氮聯(lián)合測定儀

    簡要描述:簡單說明:TC500系列儀器質(zhì)量、性能、工藝滿足您對金屬、難熔物、其他無機材料日常生產(chǎn)中氮/氧分析的需要

    • 產(chǎn)品型號:TC-500
    • 廠商性質(zhì):生產(chǎn)廠家
    • 更新時間:2024-10-08
    • 訪  問  量:2174
    詳情介紹

    詳細說明:

    TC500系列儀器質(zhì)量、性能、工藝滿足您對金屬、難熔物、其他無機材料日常生產(chǎn)中氮/氧分析的需要

    Determination of Oxygen and Nitrogen in
    Reactive/Refractory Metals and Their Alloys*
     
    Approval
    ASTM E-1409 Oxygen Determination in Titanium and Titanium Alloys
    ASTM E-1569 Oxygen Determination in Tantalum
    ASTM E-1937 Nitrogen Determination in Titanium and Titanium Alloys
     
    Sample Preparation
    A clean representative sample is required in order to obtain optimum results. Solid samples can be leached in suitable acid or abraded with a clean file, rinsed in acetone, and dried with warm air. Refer to ASTM methods above for further details.
     
    Accessories
    782-720 Crucible; 782-721 Electrode Tip; 502-344 UHP Nickel
    Baskets; 501-073 Graphite; 503-032 Glass Accelerator Scoop;
    501-059 Tin Capsules—for powdered samples. (Additional steps required for powdered samples are noted in parenthesis.)
     
    Calibration Standard
    LECO 501-320 Titanium Pin, 502-047 Zirconium Pin, NIST, or other suitable reactive/refractory metal standard.
     
    Method Parameters
    Analysis Parameters
    Outgas Cycles                           2
    Analysis Delay (seconds)             20
    Analysis Comparator                 1
    Analysis Type                              Auto
     
    Element Parameters                  Oxygen           Nitrogen
    Minimum Time (seconds)
    35
    55
    Integration Delay (seconds)
    5
    15
    Comparator Level (%)
    1
    1
     
    Furnace Parameters
    Furnace Control Mode             Power
    Purge Time (seconds)                    15
    Outgas Time (seconds)                20
    Cool Time (seconds)                    5
    Outgas Power (Watts)                 6300
    Analyze Power (Watts)                5300
     
     
     
     
     


     

    *This includes Ti, Zr, W, Mo, Ta, Nb, Hf, and their alloys.

     
    TC500


     

     
    Typical Results
     
     
     
    Titanium Pin
    Mass (g)
    Oxygen (%)
    Nitrogen (%)
     
    0.1135
    0.1808
    0.0189
     
    0.1133
    0.1843
    0.0194
     
    0.1134
    0.1831
    0.0184
     
    0.1138
    0.1819
    0.0188
     
    0.1133
    0.1821
    0.0195
     
    0.1131
    0.1829
    0.0185
     
    0.1134
    0.1833
    0.0191
     
    0.1143
    0.1849
    0.0194
     
    0.1125
    0.1837
    0.0189
     
    0.1072
    0.1830
    0.0191
     
    Average
    0.1830
    0.0190
     
    Std. Dev.
    0.0012
    0.0004
     
    Zirconium Wire
     
    Mass (g)
     
    Oxygen (%)
     
    Nitrogen (%)
     
    0.1067
    0.1246
    0.0017
     
    0.0978
    0.1273
    0.0017
     
    0.1180
    0.1246
    0.0019
     
    0.1097
    0.1235
    0.0014
     
    0.1141
    0.1272
    0.0017
     
    0.1017
    0.1226
    0.0018
     
    0.1140
    0.1269
    0.0020
     
    0.0987
    0.1239
    0.0020
     
    0.1015
    0.1233
    0.0022
     
    0.1197
    0.1270
    0.0020
     
    Average
    0.1251
    0.0018
     
    Std. Dev.
    0.0018
    0.0002
     
    Procedure
     
     
     
    1.   Determine the blank as follows:
    a.   Enter the "blank" ID code with a 1.0000 g weight in the weight stack.
    b.   Press the loader control switch, the sample loader will open.
    c.   Place one 502-344 UHP Nickel basket into the loading head using clean tweezers.
    (Place a 501-059 Tin capsule into the Nickel basket before placing it in the loading head.)
    d.   Press the loader control switch, the sample loader will close and seal and the furnace electrode will open.
    e.   Remove crucible from electrode tip and discard.  Clean furnace area using the appropriate brushes.  Vacuum away loose dust.
    f.    Place ~0.05 g 501-073 into the bottom of a 782-720 crucible.  ~0.05 g is approximay a ¼ full
    503-032 glass accelerator scoop.
    g.   Place the crucible on the lower electrode.
    h.   Press the loader control switch, the furnace electrode will close and the analysis sequence will start automatically.
    i.    Repeat steps 1a through 1h at least four more times.
    j.    Enter blank following routine outlined in operator's instruction manual.
    2.   Calibrate the instrument as follows:
    a.   Weigh the calibration sample. (Weigh the calibration sample into the tin capsule.)
    b.   Enter the calibration sample ID code and sample weight in the weight stack.
    c.   Place the calibration sample (capsule) into a nickel basket.
    d.   Press the loader control switch, the sample loader will open.
    e.   Carefully place the calibration sample/nickel basket (capsule) into the loading head using clean tweezers.  Make sure that the calibration sample (capsule) stays in the basket and the basket
    stays upright.
    f.    Press the loader control switch, the sample loader will close and seal and the furnace electrode will open.
    continued on page 3


     

    Procedure (continued from page 2)
    g.   Remove crucible from electrode tip and discard.  Clean furnace area using the appropriate brushes.  Vacuum away loose dust.
    h.   Place ~0.05 g graphite into the bottom of a crucible.
    i.    Place the crucible on the lower electrode.
    j.    Press the loader control switch, the furnace electrode will close and the analysis sequence will start automatically.
    k.   Repeat steps 2a through 2j a minimum of three times.
    l.    Complete a calibration by following the auto calibration procedure as outlined in the operator's instruction manual.
    m.  Verify the calibration by analyzing the calibration sample again.  It should fall within the expected tolerances.  If not, repeat steps 2a through 2l again.
    3.   Analyze the samples as follows:
    a.   Weigh ~0.1 g sample. (Weigh the sample into the tin capsule.)
    b.   Enter the sample ID code and sample weight in the weight stack.
    c.   Place the sample (capsule) into a nickel basket.
    d.   Press the loader control switch, the sample loader will open.
    e.   Carefully place the sample/nickel basket (capsule) into the loading head using clean tweezers.
    Make sure that the sample (capsule) stays in the basket and the basket stays upright.
    f.    Press the loader control switch, the sample loader will close and seal and the furnace electrode will open.
    g.   Remove crucible from electrode tip and discard.  Clean furnace area using the appropriate brushes.  Vacuum away loose dust.
    h.   Place ~0.05 g graphite into the bottom of a crucible.
    i.    Place the crucible on the lower electrode.
    j.    Press the loader control switch, the furnace electrode will close and the analysis sequence will start automatically.
     
    Theory of Operation
    The TC500 is a microprocessor-based, software-controlled instrument that measures both nitrogen and oxygen in a wide variety of metals, refractories, and inorganic materials. The inert gas fusion principle is employed. A weighed sample, placed in a high-purity graphite crucible, is fused under a flowing helium gas stream at temperatures sufficient to release oxygen, nitrogen, and hydrogen. The oxygen in the
    sample, combines with the carbon from the crucible to form carbon monoxide. The nitrogen present in
    the sample releases as molecular nitrogen, and any hydrogen present is released as hydrogen gas. The helium carries the sample gases through heated rare earth copper oxide which converts carbon
    monoxide to carbon dioxide (CO2) and hydrogen to water (H2O). The nitrogen passes through
    unchanged. The gases are then passed through a CO2  infrared (IR) cell where the oxygen is measured as
    CO2. CO2  and H2O are then removed by a Lecosorb/Anhydrone trap, while the nitrogen passes through
    to a thermal conductivity (TC) cell for determination.


     

    TC500 Flow Diagram
     
     
     
     
     

    留言框

    • 產(chǎn)品:

    • 您的單位:

    • 您的姓名:

    • 聯(lián)系電話:

    • 常用郵箱:

    • 省份:

    • 詳細地址:

    • 補充說明:

    • 驗證碼:

      請輸入計算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7
    技術(shù)支持:化工儀器網(wǎng)   sitemap.xml   管理登陸
    ©2025 版權(quán)所有:寧波市鄞州瑾瑞儀器設(shè)備有限公司   備案號:浙ICP備14028217號-3

    浙公網(wǎng)安備33020402000311號

    主站蜘蛛池模板: 灵台县| 根河市| 垣曲县| 平度市| 正镶白旗| 明水县| 岑巩县| 吉林省| 清流县| 白山市| 诸暨市| 铜山县| 沁源县| 潼南县| 会昌县| 六盘水市| 靖安县| 通州区| 兴化市| 康保县| 阜新| 同仁县| 涿鹿县| 饶河县| 云龙县| 平果县| 平武县| 麻栗坡县| 长岭县| 武定县| 洛宁县| 甘南县| 吴川市| 大名县| 二连浩特市| 瑞金市| 麻城市| 茶陵县| 阳高县| 兴义市| 资兴市|